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At zero temperature the equilibrium structures of a system consisting of a quantum rotator (N2)
embedded in a relaxing lattice (Ar) surrounding are studied with a variational approach. With
symmetric wave functions (parae-N2), we obtain a cubic lattice deformation near the rotator, while
with antisymmetric wave functions (ortho-N32), we obtain a tetragonal lattice deformation forming a
stable oriented ground state. At low temperatures, we investigate the properties of this system with
a quantum Monte Carlo simulation. On top of the tetragonal deformation the width of the nearest-
neighbor oscillations follows classical “scaling” laws according to a harmonic approximation, while
the static deformation turns out to be anharmonic. The Monte Carlo relaxation of the rotational
degree of freedom occurs according to an Arrhenius law with an activation energy much lower than

the local energy barriers.

PACS number(s): 61.20.Ja, 02.70.Lq, 05.30.—d, 61.72.—y

I. INTRODUCTION

Measurements of static properties of orientational
glasses like (N3),(Ar); . often show anomalous low tem-
perature behavior, e.g., a specific heat proportional to
the temperature, for reviews see Ref. [1]. In a similar
system (KCN).,(KCl);_., one observes abnormal scat-
tering behavior (triangle Bragg peaks) [2]. Such results
can neither be explained by analytical theories where the
coupling between rotational and translational degrees of
freedom is treated on a mean-field-like level [3] nor by
Edwards-Anderson-type models of orientational glasses
[4], which omit the translational degree of freedom alto-
gether. These anomalies may be attributed to the fact
that the rotational degrees of freedom of the molecules
freeze in and thus form local disordered arrangements of
the orientation. The centers of mass of the particles are
assumed to remain on a distorted ordered crystal lattice.
Thus every rotator moves in a different local arrange-
ment, which leads to a very individual distribution of
the rotational eigenenergies eventually resulting in a lin-
ear specific heat, Cp, o« T. This temperature dependency
is often [5] attributed to two-level systems, which also
shows up in anomalous dynamical properties [6]. For a
detailed understanding of such properties, computer sim-
ulations of realistic models would be rather desirable. A
molecular dynamics study of a model for No-Ar mixtures
has provided a rather satisfactory overall agreement of
the simulated phase diagram [7] with experiment [8], but
since in these works a purely classical approach was fol-
lowed, the low-temperature properties of these systems
cannot be addressed.

Here we investigate the properties of one rotator (N2)
with quantum rotational degrees of freedom, surrounded
by a fcc lattice of classical (Ar) particles, we are thus
studying the properties of (N3).(Ar);_. in the dilute
limit, z — 0. In Sec. Il we define the Hamiltonian of our
system and we describe the method, how we compute the
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statistical weight of one configuration at a given temper-
ature. Further, in Sec. III we determine the ground state
for ortho-N; and para-N; by a random walk of the trans-
lational degrees of freedom, after having computed the
ground state and the first excited state within only cubic
lattice deformations. The results of a quantum Monte
Carlo treatment of the system at finite temperatures are
presented in Sec. IV. In Sec. V we give an outlook and
summary.

II. THE METHOD

One of the reasons of our investigation was the interest
in the contribution of the lattice deformations, due to the
presence of a (N2) molecule, on the level splitting of the
rotator. In a disordered medium these deformations are
different for every rotator. Thus they induce a distribu-
tion of rotational eigenenergies and this in turn may lead
to an abnormal low-temperature specific heat.

In order to be able to compute the statistical weight
of one configuration and thus to apply the Metropolis
procedure, we first define the Hamiltonian for the whole
system.

H = Ta:({P}) + T4 (P) + Var—as({r})
+Heot ({r}, Ro, B, 0), (1)

with the kinetic translational energies T'a;, Tg;ans) for the
Ar and N, particles, the Lennard-Jones (6-12) interaction
energy [7] Var-ar for the Ar particles, and

. L2
%rot = a3

T 20 Var-n, ({r}, Ro, 9, ). @)

{r} and {p} are the positions and momenta of the classi-
cal (Ar) particles, P is the (translational) momentum
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of the (N;) molecule with particle coordinates at R;

and R,, L is its angular momentum operator, and ©
the momentum of inertia (42/20 = 4.00345 x 10-23]).
The coordinates (Ri, R2) relative to the N, center of
mass (at position Rg) are given by the polar angles
with the C4 symmetry axes, 4 and ¢, Ry = Ro %+
(sin ¥ cos p,sin I sin p, cos 9) ok _/2. Since the N vibra-
tional mode has a high energy compared to the temper-
ature we neglect the intramolecular potential and fix the
distance o},_x between the N atoms. For model param-
eters for the L-J potentials Va:_a:, VN—ar between our
particles, see Ref. [7].

The low-temperature anomalies mentioned in the in-
troduction are usually attributed to the orientational de-
grees of freedom. In this spirit we assume that at low
temperatures the time scales of the rotational degrees of
freedom and the translational degrees of freedom sepa-
rate and an adiabatic approximation is justified [9]. Now
one can formally write down the partition function at
temperature T = B~ !/kp, where the translational mo-
menta are integrated out.

2(8) = / d{p}d{P} exp{—B(Tar + TE™*™)}

X /d{r}dRo exp{—BVar-ar}
xtrg,‘p[exp{—ﬁ”ﬁmt}]. (3)

The integration over the classical momentum space can
be carried out immediately and we can define W({r}, Ry)
as the unnormalized probability weight of the configura-

tion {{r},Ro}.
W ({r},Ro) = exp{—BVar-ac}tro o [exp{—BHrot}].  (4)

Thus, if we can work out the trace, we now can apply the
Metropolis procedure and make a random walk through
the phase space at a defined temperature.

For our system two limiting cases can be discussed im-
mediately. If ® = 0 the ground state of the total prob-
lem will have cubic symmetry, since only ! = 0 will give
a contribution to the wave function (I = 1 would be very
costly in energy). If ® — oo, we obtain the classical case
and the lowest energy structure should have tetragonal
symmetry.

Since we don’t want to break the symmetry of our
system (we know that at most the average has to have
cubic symmetry) we separate our total Hamiltonian when
expanding the trace in one cubic part Ho, which consists
of the rotational kinetic energy and a cubic potential,
obtained by symmetrization, and into a perturbance #,,
formed by the full potential minus the cubic potential,
thus,

Hrot = HO + 7"11 (5)
. iz
%0 = 56 + V({r}cub, {R}), (6)
Hi =V ({r}, {R}) = V({r}eu, {R}). (7)

3957

We restrict the dimensionality of the Hilbert space to
the dimensionality four [9]. To have the best expansion
in this symmetry class, we vary the four next neighbor
shells within cubic symmetry and solve the eigenvalue
problem.

Holth) = eol¥). (8)

Then we compute the Ar-Ar potential and choose the
configuration {r}.,» that minimizes the total energy o+
VAr—Ar-

In order to obtain thermal averages we use the Trotter
product formula for the trace.

tr0,<p (CXP{ _ﬁﬁrot })

= lim trg,o[(exp{—BHo/L} exp{—BH1/L})"], (9)

where L denotes the Trotter dimension. The matrix el-
ements in Eq. (9) are computed after linearization of
the second factor with the wave functions from our min-
imalization procedure, see Sec. III. Since our present
computations are done in low dimensional Hilbert spaces
(with dimensions < 4), these matrix elements were eval-
uated by numerical integration (over 60 x 60 points on
the unit sphere), resulting in simple 4 x 4 matrices A,
and since AL = (---((A%)2)2...)2, | for L = 2M M
integer, effectively only M matrix products have to be
done to evaluate the trace. This allows us to work with
giant values of L, see Sec. IV. We then use these numbers
and apply standard techniques in a Monte Carlo simula-
tion, see Ref. [9]. Results of these quantum Monte Carlo
simulations are presented in Sec. IV.

III. THE GROUND STATE

In determining the wave function we restricted the
variations until now on cubic variations of the four next
neighbor shells of the rotator. Now we want the sur-
rounding argon matrix to make a random walk through
the phase space, but the new coordinates are only ac-
cepted if the total energy of the system is lowered. These
calculations are carried out for para-N; and ortho-Ns.

We first sketch the way for obtaining the ground state
for para-N3, for details see Refs. [10-16] We put Ar par-
ticles with positions {r;} on the fcc lattice sites {r},
substitute a single Ar particle by a rigid rotator (IN3)
with the center of mass located on the lattice site Ry
and compute the symmetrized potential

VS({r},{R},%,9)

= Z[VN—Ar(Rl —7i) + Vn_ar(Rz — 3)]. (10)

For fixed positions of the Ar particles we have to solve
the eigenvalue problem witﬂh the Hamiltonian H,. given
by Egs. (2), (5)—(7), and #; = 0 in this case.
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Our potential V5 is of cubic symmetry, thus the Hamil-
tonian is invariant under operations with elements of the
cubic group Op. At low temperatures we are only in-
terested in the lowest energy levels, in particular, of the
ten possible eigenfunction symmetry types [14] only the
solutions for the irreducible representations A;, and Ty,
of Op. For para-N, we obtain the lowest energy eigen-
state by utilizing A,,. The energy eigenvalues 6:15 (k
is the angular momentum eigenvalue of the free rota-
tor) are nondegenerate, the eigenfunctions are symmet-
ric, g9 = 634" denotes the ground state of the rotator.
The eigenvalues efl“ are triply degenerate, an eigenfunc-
tion is antisymmetric and has a nodal line along one of
the Cy4 axes, g; = ET"‘ denotes the lowest possible eigen-
value in this symmetry.

For the particular symmetry type ST we expand the
eigenfunctions with symmetry adapted combinations of
spherical harmonics [15] X727 (n distinguishes orthonor-
mal functions for the same k and different coefficients for
the magnetic numbers m);

Za

Energy eigenfunctions which minimize the energy should
have minimal energy eigenvalues as functions of the
af"fl’s, thus all first partial derivatives of the energy
elgenvalues with respect to the a’s are zero. Utiliz-
ing the Schrodinger equation and dlfferentlatxon of the

expectation value ST  HoypST) = €Y kn(akn)? with

respect to the aj L gives a numerical eigenvalue problem,
where an elgenvector is given by an array of the a’s for
a particular eigenvalue €. These numerical eigenvalues
are the possible energy eigenvalues and the correspond-
ing a’s optimize the energy eigenfunctions (Ritz-Galerkin
method) [16].

We then vary the positions of the neighbors (NN de-
noting nearest neighbors, 2N next nearest neighbors, nN
the nth neighbors) in the volume V by a free variation
of the coordinates up to the fourth neighbor shell and a
variation of the density p=N/V, always accepting con-
figurations with lower energy. For every coordinate com-
bination we approximate the ground state wave function
for the rotator with the Ritz-Galerkin method in the new
potential of cubic symmetry. We finally obtain for the
case of para-N; as the ground state a cubic lattice distor-
tion with the zero pressure solid density po3,_,,=1.0669,
where all neighbor coordinates are changed in radial di-

. N
rection away from the rotator, rNN = /\NNr?’N , 2N =

/\ZNr?’ZN. We find a minimum in the total energy of
the coupled system for ANN = 1.0128, A?N = 0.9997,
A3N = 1.0016, and A*N = 1.0018, where the change of the
volume spanned by the first neighbors is very close to the
change of the volume spanned by the fourth neighbors,
see Fig. 1(a). The wave function for the para-N, equi-
librium ground state with energy o (the ground state
energy difference between the para-N, dilution and the
pure Ar case is 350 K) has six maxima representing the
enhanced probability for the rotator orientation in one of
the (100) directions. The resulting wave function for the

P31 (9,0, {r;}) = (X3

T,  (11)
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FIG. 1. Ground state symmetry [(a) and (b)], energy levels
(c) for para-N2 and ortho-N2, and next neighbor distribution
functions [(d) and (e)] at finite temperatures; the left column
shows results for para-N2, the right column for ortho-N2. (a)
Ground state lattice deformation near the rotator impurity
for para-Ng, the points are centers of classical (Ar) parti-
cles, the central particle is the rotator impurity (Nz). (b)
Ground state lattice deformation near the rotator impurity
for para-N2, symbols are the same as (a). (c) Rotator energy
levels. Left side: cubic symmetry of Ar atoms, so that the
total energy for para-N: is minimized; the first excited state
(odd wave function) is triply degenerate. Right side: tetra-
gonal symmetry of Ar atoms, so that the total energy is mini-
mized with odd wave functions; the upper state is now twofold
degenerate. The classical Ar-Ar energy of the environment in
cubic and tetragonal symmetry is shown for comparison. (d)
Nearest-neighbor distribution functions P({r""}) in the di-
rections IT (1, +1, 0) (in arbitrary units) around the impurity
(at position rc = Ry,2) at finite temperatures for the pure
(Ar) system (full line) and para-N; (dashed line). (e) Same
as (d), but for classical N2 (full line) and ortho-N2 (dashed
line).
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next energy level, e;, is energetically triply degenerate,
because of the cubic symmetry, the energy difference is’
€1 — €0 = 3.6 K, see Fig. 1(c).

These wave functions can now be utilized for the eval-
uation of the trace in Eq. (9) and thus for a quan-
tum Monte Carlo (MC) calculation at nonzero tempera-
tures [9], see Sec. IV.

In case of ortho-N; we can no longer find the ground
state in terms of even wave functions and thus utilize the
wave functions of the symmetry class T}, for finding the
ground state of the system again by free variation of the
neighbor coordinates and utilizing Eq. (9) in the limit
B — oo with the four lowest energy states obtained in
the ground state configuration for para-N,. We finally
find a tetragonal ground state lattice deformation in this
case, see Fig. 1(b). The energy levels are not any longer
triply degenerate, but split into one oriented ground state
with lowest energy [see Fig. 1(c)] and a double degener-
ate excited state (the energy difference is 117.5 K) with
mutual perpendicular orientation to each other and to
the ground state. The rotational energy of the oriented
ground state for ortho-N; is even lower than the ground
state energy in case of the nonoriented case (para-N,),
the energy difference is 42.2 K, see Fig. 1(c). The ground
state energy difference for the total system between the
tetragonal and the cubic symmetry (including the classi-
cal Ar-Ar interaction energy, which increases by 8 K), is
34.2 K, see Fig. 1(c).

IV. QMC RESULTS AT FINITE
TEMPERATURES

At finite temperatures the trace is taken with symmet-
ric wave functions from Sec. II for para-N; and with an-
tisymmetric wave functions for ortho-N,. Thermal aver-
ages () are taken with a MC procedure [17-19] according
to the measure in Z(8), utilizing the Trotter decomposi-
tion [9,17], Eq. (9).

We are interested in low-temperature phenomena and
assume that the thermal properties at very low tempera-
tures are predominantly determined by the lowest energy
states. In the cubic symmetry class A4 the two lowest ro-
tator states have an energy difference of 204%/20 ~ 57 K,
for zero external potential, the energy difference between
the two lowest states for the annealed rotator (A, —T1,,)
is 2h%/20 = 6 K, reducing to 3 K in the relaxed Ar sur-
rounding (see Sec. IIT). The rotator states in the relaxed
cubic Ar environment (see Sec. III) are obtained by a
variational method employing states with [ < 12; conver-
gence was obtained already for ! > 6 [10]. We checked the
quality of our “low level” approximation by a comparison
of low-temperature specific heat data for the annealed ro-
tator in a fixed Ar surrounding of cubic symmetry and
wave functions obtained with the methods of Sec. III
with specific heat data obtained via the Trotter-Suzuki
formula [17] and free rotator eigenstates up to I = 14 [20].
The data obtained in these two ways agree precisely
for temperatures below 1 K, see Table I, and still are
roughly in mutual agreement for 7' < 10 K. The classi-
cal high-temperature limit cannot be reached within our
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TABLE 1. Specific heat cy [kB] of the annealed rotator in
a static cubic lattice versus temperature. Column a: results
with free rotator eigenstates (I < 2) [20]; column b: results
with free rotator eigenstates (I < 5) [20]; column c: results
with free rotator eigenstates (! < 14) [20]; column d: results
with four symmetry adapted wave functions (see Secs. III and
IV). The number in brackets denotes a multiplicative power
of ten.

Specific heat

T [K] a b c d
0.25 1.516] 0.0012 0.0003 0.0003
0.50 0.0040 0.1351 0.1075 0.1076
1.00 0.3078 0.9662 1.0014 0.8940
2.00 1.0231 0.9297 1.0291 0.7318
4.00 0.5036 0.4205 0.3295 0.2064

current restriction to a low-dimensional Hilbert space, of
course. The error in thermal averages of observables re-
sulting from the application of the Trotter decomposition
with Trotter index L is proportional to inverse powers of
L [21]. The convergence of our results with respect to
L was checked with Trotter-scaling plots of all quantities
investigated for a fairly large set of temperatures, includ-
ing the lowest and highest one. As the end of Sec. II
notes, the low dimension of our Hilbert space allows us
to work with arbitrarily large Trotter dimensions L, and
thus the error associated with the finiteness of L can be
made extremely small. For the thermal averages over
identical paths in the phase space of the classical degrees
of freedom we find a plateau in the scaling plots for 22°
K < LT < 23° K with a relative error less than 108, for
larger L T rounding effects set in.

The specific heat of our total system is presented in
Fig. 2. At low temperatures we obtain the classical
value, since the N, contribution to the energy fluctuation
is small in the system (N3).(Ar);—, in the dilute limit,
z — 0. Since our Monte Carlo treatment of positions
is classical, these results cannot be compared to experi-
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FIG. 2. Specific heat Cv versus temperature of the system
(N2)- (Ar)i—- for £ = 0.002. Monte Carlo results (triangles:

Cv obtained by a temperature derivative of energy simulation
data; circles: Cv obtained from energy fluctuations).
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ments, of course: rather Fig. 2 is important as a check
that thermal equilibrium in the simulation is achieved
down to the lowest temperatures.

At finite temperature the width of the real space cor-
relation function is of special interest, since this property
is principally available by measuring the Debye Waller
factor exp(—2W) with,

2W = ((qu)?), (12)

where q denotes the change of momentum of an elasti-
cally scattered particle and u is the displacement vec-
tor. In a classical treatment of sound one generally finds
the following proportionality in a harmonic approxima-
tion [22]:

2W  (kgT)C, (13)

where C denotes the relevant elastic modulus. Since we
are working with only one impurity, we choose the dis-
placement vector,

u=4(Rn, —Th;), (14)
and for q a permutation II of (£1,+1,0)
q=1I (£1,+1,0). (15)

At low temperatures (qu)? = g?u?, thus, if the harmonic
approximation is valid, u?/T should be a constant. We
perform our simulations with four different central im-
purity particles: ortho-Nj, para-N3, classical-N; and Ar.
In the case, that Ar is the “impurity”, exp(—2W) is the
Debye Waller factor, in the three other cases exp(—2W)
has the signification of a pseudo-Debye Waller factor. For
ortho-Ny and classical-N3, we obtain a double peak dis-
tribution, where the relative weight of the peaks are 1:2,
due to the tetragonal distortion of the fcc lattice, see
Figs. 1(d), and 1(e). We compute at different tempera-
tures the radial distribution function and fit the results
obtained for para-N, and Ar with a simple Gaussian, in
other cases with double Gaussians, respecting the rela-

T T T T T T Y
125 ¢+ - -
- =
-
X 00 A N E
P A
N; a
w 15F o b . :
Io Y °
= " .
— °
A S0 o left peak ° <
NJ = right peak °
v A A Arpeak
25 2l v Al (] Ve
10-? 107! 1 10 10?
TIK]

FIG. 3. Normalized widths (u?)/T versus temperature of
the nearest-neighbor distribution function [see Figs. 1(d) and
1(e)] for classical N; (squares: large distance peak; circles:
small distance peak) and Ar (triangles: line for visual help).
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TABLE II. The temperature dependence of the averaged
distance between the nearest-neighbor particle and the rota-
tor (para-N3), (rNV), in the directions II(£1,%+1,0), and the
ratio of the averaged squared displacement vector and the
temperature, (u®)/T, see Eq.(14).

T [K] (r"™) (oar-ar) (u*)/T (10°° o}, a:/K)
10 1.1136 5.87

1 1.1142 6.89

0.1 1.1134 6.66

0.01 1.1134 7.04

tive weight of 1:2 of the peaks. In Figs. 3 and 4 the
widths of the Gaussians are plotted versus temperature.
In Fig. 3 the pure Ar system shows classical, harmonic
behavior at temperatures below 10 K (remember that the
translational degrees of freedom are treated classically
and the computations are carried out at constant den-
sity). At higher temperatures the atoms move more in
the repulsive part of their potential and u?/T decreases,
see Table II. In the case of ortho-N, [see Fig. 4] the
behavior is quite similar to the pure Ar case, but due
to the larger volume of the N; molecule the peak po-
sition for the nearest neighbor Ar is shifted to larger
distances from the molecule and the width of the dis-
tribution is smaller, thus, the system has a higher elastic
module. If classicalN, is the impurity [Fig. 3], every
peak shows qualitatively the same behavior as the pure
Ar system, but the widths of the two peaks are different.
This shows, that the effective “spring constants” of the
central particle to the next neighbor are dependent of
the direction, namely, whether the next neighbor is sit-
ting in the plane perpendicular to the orientation or not.
The differences in the width of the two different peaks of
the radial distribution function indicates, that the local,
static deformation due to the presence of the N, rota-
tor is anharmonic. Nevertheless the widths of the peaks
obey scaling laws with temperatures obtained generally
by doing the harmonic approximation. Similar to the
classical case, ortho-N, [Fig. 4] causes an anharmonic,

11.0 T T T
[ ]
—~— 100} @ left peak 1
¥ m right peak °
— b
<
< 9.0 ° 4
No ° °
) ° d °
°
2 eof 1
'—
—
A -
N 70 = . = b
v .-
™ -
1 A ' L
60 0.1 1.0 10.0
TIK]

FIG. 4. Normalized widths (u?)/T versus temperature of
the nearest neighbor distribution function [see Fig. 1(e)] for
ortho-N3 (circles: small distance peak; squares: large distance
peak).
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static deformation, and at low temperatures up to 10 K
classical harmonic approximation turns out to be valid.
With increasing temperatures, not only the ground state
is occupied and, thus, the rotational fluctuations cause
translational fluctuation of the next neighbors. With a
higher dimensional Hilbert space, we assume this effect to
set in already at lower temperatures, thus, in the whole
range of temperature the quantum-mechanical rotator al-
lows the surrounding to fluctuate more than the classical
rotator.

It is of great physical interest to consider also the
dynamical behavior of the rotator impurity in its Ar
environment. Since Monte Carlo dynamics is not di-
rectly linked to the dynamics in real time, in principle
one should then treat the (classical) dynamics of the Ar
atoms by molecular dynamics methods, but this is out
of the scope here and will be considered in future work.
But a qualitative insight into the rotational diffusion of
the rotator can already be gained in terms of the stochas-
tic dynamics provided by the Monte Carlo process. This
is because for a rotational diffusion that is much slower
than the typical phonon times the phonons act like a heat
bath inducing random reorientations of the rotator, and
a master equation description as realized by the Monte
Carlo process is not unreasonable (see also Ref. [18]). Of
course, there is still an unknown conversion factor from
the Monte Carlo “time” to the physical time, which could
only be fixed by a more realistic treatment.

The orientational correlation function ¥(t) for classical
rotators often used in the literature [23,24] is

¥(t) = (n(t)n(0)) , (16)

where n(t) is the normalized vector indicating the orien-
tation of the molecule at time ¢. In Ref. [23] the following
time dependency of the correlation function is derived an-
alytically for a classical rotator coupled to a stochastic
torque:

$(t) = exp{—A(t/7 + exp[-t/T] - 1)} , 17)

where 7 is a relaxation time and A an adjustable con-
stant of order one. Also a numerical study [24] within
the Langevin model of a classical rotator showed an ex-
ponential (and faster) decay of the correlation function
with time.

Due to the indistinguishability of the nitrogen nuclei
the straightforward generalization of Eq. (16) to the
quantum case results in zero values in all try ,{n(t)}.
Thus, we define an appropriate time correlation function
®(t) with properties ®(0) = 1 and lim; o, ®(t) = 0:

_ (tro,o{2%} — try o {F?*/3})c(?)
20 = Tirpp (2] — 0y (P /3))0(t = 0)’

with the operator Z projecting on the (001) direction.
()c (t) denotes the statistical average over configura-
tions at time ¢ (¢ is taken in Monte Carlo steps). Since
we are working in the adiabatic approximation, we mea-
sure the orientation of the surrounding Ar matrix and
not the quantum dynamics. In particular, Eq. (18) en-
ables us to clarify whether the relaxation of the deformed

(18)
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o(t)

02 —— 1 . i L .

FIG. 5. Orientational correlation function ®(t) of ortho-N2
versus Monte Carlo steps for different temperatures [circles:
T = 2 K; triangles: T = 6 K; squares: T = 12 K; and
diamonds: T = 48 K, lines are fits through the data with
Eq.(19)].

Ar surrounding is guaranteed within realistic MC times.
Only if the length of the MC runs is large enough that a
significant decay of ®(t) has occurred are the MC data
sufficiently decorrelated to allow statistically significant
estimates. Thus, a study of ®(¢) is also mandatory to
establish the actual accuracy. In Fig. 5 we present a
plot of some typical relaxation functions. Surprisingly
our results can be described by a stretched exponential,

®(t) x exp{—(t/7)"} . (19)

The exponent v has values near one at very low tem-
peratures and seems to decrease with increasing temper-
ature, see Table III. For the data obtained in this paper
we work with a statistical effort of 20000 Monte Carlo
steps, the system consists of 500 particles. Even with
this effort, for quantities like + it is still very difficult to

t [MCS]

—— Arrhenius Law
® Measured Times

1 1 1
0.00 0.10 0.20 0.30

1/TIK

FIG. 6. Arrhenius plot of the relaxation time 7 (circles: 7
obtained from fits through simulation data of Fig. 5; line:
Arrhenius law interpolation line).
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TABLE III. Exponent « in the stretched exponential form
for the rotator time correlation function ®(t)  exp{—(t/7)"].

T K] T [MCS] ¥
4 260 0.99
6 51 1.00
12 10 0.81
48 2.5 0.72

judge if this exponent is temperature dependent or not
due to statistical noise and long relaxation times.

If we make an Arrhenius plot of the orientation relax-
ation time 7, see Fig. 6, we obtain an apparent activation
energy of 20 kg T, which is much lower than the local
barrier for turning a classical N, molecule from one pre-
ferred orientation to another. This would cost about 70
kgT.

V. SUMMARY AND OUTLOOK

We presented the results of classical and quantum
Monte Carlo simulations of a rotator impurity N, in Ar.

For para-N, we obtain a symmetric lattice deformation
with harmonic excitations at finite temperatures. For
ortho-N, we obtain an asymmetric lattice deformation in
the tetragonal structure, the lattice vibrations are never-
theless harmonic at low temperatures. The orientational
degree of freedom relaxes according to an Arrhenius law.
In a future work we are going to include the interac-
tions of many quantum rotators in order to get a bet-
ter understanding of the quantum phenomena in orien-
tational glasses at low temperatures. In that case we
treat the translational degrees of freedom of the Ar parti-
cles quantum mechanically by path integral Monte Carlo
techniques [17] and the rotators with a low-temperature
expansion in higher Hilbert space dimensions.
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